

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

API Design Checklist
Ten questions to ask before designing an API

@JaroslavTulach
NetBeans Platform Architect
Oracle

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Motto

4

Just like there is a difference between describing a house
and describing a Universe, there is a difference between
writing a code and producing an API.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

About Me
● 1996 – Xelfi @ MatFyz

● 1997 – Initial NetBeans APIs

● 1999 – Acquired by Sun Microsystems

● 2008 - Practical API Design book

● 2010 – Acquired by Oracle
● NetBeans & JDeveloper

● 2012 – 20 API Paradoxes book

● now – HTML/Java APIs – e.g. @DukeScript

5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

What is my API?

How does a good API look?

Is my API correct?

Is my API misleading its users?

Am I egocentric?

1

2

3

4

5

6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Am I sustainer or developer?

Is my API easy to use?

How do I accept patches?

Do I hide own garbage?

Am I ready for future?

6

7

8

9

10

7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

What is my API?
• Is API about REST and JSON?

– Popular these days

– “API is not enough, protocols are everything!” - upside down

• API is “everything somebody else may depend on”
– Javadoc is not the only API you have

– Files layout, properties, ports, protocols, behavior, memory

– Private fields? Reflection? sun.misc package?

• Stability categories
– Stable/Under Development/Friend/Private/Deprecated

8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

How does a good API look?
• Coolness

– Be able attract attention

• Time to Market
– Ready for cluelessness

– Productive Quickly – archetypes, wizards & tools

• Preservation of Investments
– Backward compatibility

– Track record important

9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Demo

10

Get started with @DukeScript wizard!

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Is my API correct?
• It is correct because it exists!

– Shouldn't the API satisfy some goal?

• Working backwards
– Press release – high level description

● http://wiki.apidesign.org/wiki/JerseyFaces

– Manual – use-cases

– FAQ – converting use-cases to action

– The actual classes, methods & Javadoc

• Top-down verification

11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Demo

12

JerseyFaces press release

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Is my API misleading its users?
• Things should have a single meaning

• Clarity of access modifiers
– public final
– protected abstract
– protected final

• Clarity of types
– Client API – use final class
– Service Provider Interfaces – use interface
– Evolution story

13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Demo

14

HTML/Java Audio API & SPI

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Am I egocentric?
• Optimize for API writer or user?

– One write vs. millions of users

• Does beauty matter?
– API use should lead to beautiful code

• API needs to be stable & its internals reliable
– Avoid visible refactorings
– Be ready to hack

● Bytecode patching
● Dependency rewrites

15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Am I sustainer or developer?
• API design is art

– No, it is engineering

• No repeating release cycles
• Creativity while working on first version

– Prepare your evolution story

• Switch to sustaining mode
– Compatibility #1 constraint

• Testing for compatibility
– Binary: sigtest

16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Is my API easy to use?
• Usability study @apiusabilitytst

– http://wiki.netbeans.org/Html4JavaUXStudy2014
– Newcomer experience only
– Can optimize “time to market”

• Comparing complexity of code
– @DukeScript Java code shorter than original JavaScript

• Testability
– @DukeScript application logic fully unit testable

17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Demo

18

Short and testable DukeScript code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

How do I accept patches?
• Reaching limits of one's API

– Force forks? Encourage hacks? Accept patches?

• I don't like your patch – artistic approach
– Sure you don't as it is mine! But why wouldn't you accept it?

● “Does not fit in the spirit”, “Would need careful review”, “Busy now”, etc.

• Your patch is not good enough – public API review process
– Backward compatible
– Documented
– Tested
– Ready for evolution

19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Do I hide my garbage?
• Javadoc for everything?

– No, just for API packages

• Minimize conceptual surface
– API classes should not expose implementation ones
– Client API should not expose SPI interface

• Modules

– Versioning
● Semantic versioning – range dependencies

– Enforcing public/private packages

20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Am I ready for the future?
• Your API is wrong!

– Your API is definitely wrong!

• Get your evolution story right!
– Client API needs new methods
– Service provider interfaces cannot change

• There will be deprecations
– Define reasonable end of life policy

● Transfer API into different stability category

• Patching bytecode, classloading tricks & co.

21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Checklist

● API Stability categories assigned
● Optimized for Time to Market
● Future press release written
● Criteria for accepting patches published
● API elements have a single meaning
● Ready to sacrifice myself not users
● API evolution story defined
● Implementation classes/packages hidden
● Testing signature compatibility
● End of life policy

22

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Program Agenda
	Snímek 6
	Snímek 7
	Title and Content Layout Line 1 Title and Content Layout Line 2
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Title, Subtitle, and Content Layout

